You are given an array of CPU tasks, each labeled with a letter from A to Z, and a number n. Each CPU interval can be idle or allow the completion of one task. Tasks can be completed in any order, but there's a constraint: there has to be a gap of at least n intervals between two tasks with the same label.
Return the minimum number of CPU intervals required to complete all tasks.
Input: tasks = ["A","A","A","B","B","B"], n = 2
Output: 8
Explanation: A possible sequence is: A -> B -> idle -> A -> B -> idle -> A -> B.
After completing task A, you must wait two intervals before doing A again. The same applies to task B. In the 3rd interval, neither A nor B can be done, so you idle. By the 4th interval, you can do A again as 2 intervals have passed.
Input: tasks = ["A","C","A","B","D","B"], n = 1
Output: 6
Explanation: A possible sequence is: A -> B -> C -> D -> A -> B.
With a cooling interval of 1, you can repeat a task after just one other task.
Input: tasks = ["A","A","A", "B","B","B"], n = 3
Output: 10
Explanation: A possible sequence is: A -> B -> idle -> idle -> A -> B -> idle -> idle -> A -> B.
There are only two types of tasks, A and B, which need to be separated by 3 intervals. This leads to idling twice between repetitions of these tasks.
tasks[i] is an uppercase English letter.0 <= n <= 100The problem can be visualized as filling slots in a schedule but ensuring that there are enough cooldown periods between the same tasks. The most basic approach involves using a priority queue to always schedule the task that is left with the highest frequency. This strategy simulates the task execution by tracking time and rearranging tasks based on cooldowns.
The most optimal solution to this problem is to directly calculate the least interval based on the required cooling periods and the frequencies of the most often appearing tasks. We can use a mathematical approach to determine how to place the tasks efficiently.