There is an undirected graph with n nodes, where each node is numbered between 0 and n - 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has the following properties:
graph[u] does not contain u).graph[u] does not contain duplicate values).v is in graph[u], then u is in graph[v] (the graph is undirected).u and v such that there is no path between them.A graph is bipartite if the nodes can be partitioned into two independent sets A and B such that every edge in the graph connects a node in set A and a node in set B.
Return true if and only if it is bipartite.
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
graph.length == n1 <= n <= 1000 <= graph[u].length < n0 <= graph[u][i] <= n - 1graph[u] does not contain u.graph[u] are unique.graph[u] contains v, then graph[v] contains u.A graph is bipartite if its nodes can be divided into two independent sets such that no two graph nodes within the same set are adjacent. We can utilize a two-color technique, where we attempt to color the graph using two colors and verify that no two adjacent nodes have the same color. This can be efficiently done using Depth First Search (DFS).
Another way to solve the problem using two-coloring is to utilize Breadth First Search (BFS). This approach uses a queue to explore each level of the graph and ensures that adjacent nodes are assigned different colors.